Welcome to LookChem.com Sign In|Join Free

CAS

  • or

25468-44-4

Post Buying Request

25468-44-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

25468-44-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 25468-44-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,5,4,6 and 8 respectively; the second part has 2 digits, 4 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 25468-44:
(7*2)+(6*5)+(5*4)+(4*6)+(3*8)+(2*4)+(1*4)=124
124 % 10 = 4
So 25468-44-4 is a valid CAS Registry Number.

25468-44-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name N-benzylhexan-1-amine

1.2 Other means of identification

Product number -
Other names N-(n-hexyl) benzylamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:25468-44-4 SDS

25468-44-4Relevant articles and documents

Integrated Electro-Biocatalysis for Amine Alkylation with Alcohols

Pe?afiel, Itziar,Dryfe, Robert A. W.,Turner, Nicholas J.,Greaney, Michael F.

, p. 864 - 867 (2021/01/21)

The integration of electro and bio-catalysis offers new ways of making molecules under very mild, environmentally benign conditions. We show that TEMPO mediated electro-catalytic oxidation of alcohols can be adapted to work in aqueous buffers, with minimal organic co-solvent, enabling integration with biocatalytic reductive amination using the AdRedAm enzyme. The combined process offers a new approach to amine alkylation with native alcohols, a key bond formation in the chemical economy that is currently achieved via precious metal-catalyzed hydrogen-borrowing technologies. The electrobio transformation is effective for primary and secondary alcohols undergoing coupling with allyl, propargyl, benzyl, and cyclopropyl amines, and has been adapted for use with solid-supported AdRedAm for ease of operation.

Fluorescent Membrane Tension Probes for Early Endosomes

Piazzolla, Francesca,Mercier, Vincent,Assies, Lea,Sakai, Naomi,Roux, Aurelien,Matile, Stefan

supporting information, p. 12258 - 12263 (2021/04/30)

Fluorescent flipper probes have been introduced recently to image membrane tension in live cells, and strategies to target these probes to specific membranes are emerging. In this context, early endosome (EE) targeting without the use of protein engineering is especially appealing because it translates into a fascinating transport problem. Weakly basic probes, commonly used to track the inside of acidic late endosomes and lysosomes, are poorly retained in EE because they are sufficiently neutralized in weakly acidic EE, thus able to diffuse out. Here, we disclose a rational strategy to target EE using a substituted benzylamine with a higher pKa value as a head group of the flipper probe. The resulting EE flippers are validated for preserved mechanosensitivity, ready for use in biology, particularly to elucidate the mechanics of endocytosis.

Ruthenium(ii) complexes with N-heterocyclic carbene-phosphine ligands for theN-alkylation of amines with alcohols

Huang, Ming,Li, Yinwu,Lan, Xiao-Bing,Liu, Jiahao,Zhao, Cunyuan,Liu, Yan,Ke, Zhuofeng

supporting information, p. 3451 - 3461 (2021/05/03)

Metal hydride complexes are key intermediates forN-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in theN-alkylated reactionviareactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex6cbwith a phenyl wingtip group and BArF?counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selectionvia[Ru-H] species in this process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 25468-44-4