Welcome to LookChem.com Sign In|Join Free

CAS

  • or

269410-03-9

Post Buying Request

269410-03-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

269410-03-9 Usage

General Description

4-(Phenylcarbonyl)phenylboronic acid, pinacol ester is a chemical compound used in organic synthesis and pharmaceutical research. It is an important reagent for the construction of carbon-carbon and carbon-heteroatom bonds. The pinacol ester group provides stability and enhances the compatibility of the boronic acid functionality, making it more suitable for various reactions. 4-(PHENYLCARBONYL)PHENYLBORONIC ACID, PINACOL ESTER is commonly used in Suzuki-Miyaura cross-coupling reactions as well as in the synthesis of biaryls, heterocycles, and other complex organic molecules. It is a valuable tool for chemists and researchers in the development of new drugs and materials.

Check Digit Verification of cas no

The CAS Registry Mumber 269410-03-9 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,6,9,4,1 and 0 respectively; the second part has 2 digits, 0 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 269410-03:
(8*2)+(7*6)+(6*9)+(5*4)+(4*1)+(3*0)+(2*0)+(1*3)=139
139 % 10 = 9
So 269410-03-9 is a valid CAS Registry Number.
InChI:InChI=1/C19H21BO3/c1-18(2)19(3,4)23-20(22-18)16-12-10-15(11-13-16)17(21)14-8-6-5-7-9-14/h5-13H,1-4H3

269410-03-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name phenyl-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanone

1.2 Other means of identification

Product number -
Other names BM268

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:269410-03-9 SDS

269410-03-9Relevant articles and documents

Identification and optimization of biphenyl derivatives as novel tubulin inhibitors targeting colchicine-binding site overcoming multidrug resistance

Cheng, Bao,Zhu, Guirong,Meng, Linghua,Wu, Guolin,Chen, Qin,Ma, Shengming

, (2021/11/22)

Microtubule targeting agents (MTAs) are among the most successful chemotherapeutic drugs, but their efficacy is often limited by the development of multidrug resistance (MDR). Therefore, the development of novel MTAs with the ability to overcome MDR is urgently needed. In this contribution, through modification of the unsymmetric biaryl compounds, we discovered a novel compound dxy-1-175 with potent anti-proliferative activity against cancer cells. Mechanistic study revealed that dxy-1-175 inhibited tubulin polymerization by interacting with the colchicine-binding site of tubulin, which caused cell cycle arrest at G2/M phase. Based on the predicted binding model of dxy-1-175 with tubulin, a series of new 4-benzoylbiphenyl analogues were designed and synthesized. Among them, the hydrochloride compound 12e with improved solubility and good stability in human liver microsome, exhibited the most potent anti-proliferative activity with IC50 value in the low nanomolar range, and markedly inhibited the growth of breast cancer 4T1 xenograft in vivo. Notably, 12e effectively overcame P-gp-mediated MDR and our preliminary data suggested that 12e may not be a substrate of P-glycoprotein (P-gp). Taken together, our study reveals a novel MTA 12e targeting the colchicine-binding site with potent anticancer activity and the ability to circumvent MDR.

Light- and Manganese-Initiated Borylation of Aryl Diazonium Salts: Mechanistic Insight on the Ultrafast Time-Scale Revealed by Time-Resolved Spectroscopic Analysis

Firth, James D.,Hammarback, L. Anders,Burden, Thomas J.,Eastwood, Jonathan B.,Donald, James R.,Horbaczewskyj, Chris S.,McRobie, Matthew T.,Tramaseur, Adam,Clark, Ian P.,Towrie, Michael,Robinson, Alan,Krieger, Jean-Philippe,Lynam, Jason M.,Fairlamb, Ian J. S.

supporting information, p. 3979 - 3985 (2021/02/03)

Manganese-mediated borylation of aryl/heteroaryl diazonium salts emerges as a general and versatile synthetic methodology for the synthesis of the corresponding boronate esters. The reaction proved an ideal testing ground for delineating the Mn species responsible for the photochemical reaction processes, that is, involving either Mn radical or Mn cationic species, which is dependent on the presence of a suitably strong oxidant. Our findings are important for a plethora of processes employing Mn-containing carbonyl species as initiators and/or catalysts, which have considerable potential in synthetic applications.

Recyclable Pd2dba3/XPhos/PEG-2000 System for Efficient Borylation of Aryl Chlorides: Practical Access to Aryl Boronates

Cai, Mingzhong,Huang, Bin,Luo, Chengkai,Xu, Caifeng

, (2021/12/02)

Pd2dba3/XPhos in poly(ethylene glycol) (PEG-2000) is shown to be a highly stable and efficient catalyst for the borylation of aryl chlorides with bis(pinacolato)diboron. The borylation reaction proceeds smoothly at 110 °C, delivering a wide variety of aryl boronates in good to excellent yields with high functional group tolerance. The crude products were easily isolated via simple extraction of the reaction mixture with cyclohexane. Moreover, both expensive Pd2dba3 and XPhos in PEG-2000 system could be readily recycled and reused more than six times without loss of catalytic efficiency.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 269410-03-9