Welcome to LookChem.com Sign In|Join Free

CAS

  • or

317-66-8

Post Buying Request

317-66-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

317-66-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 317-66-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,1 and 7 respectively; the second part has 2 digits, 6 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 317-66:
(5*3)+(4*1)+(3*7)+(2*6)+(1*6)=58
58 % 10 = 8
So 317-66-8 is a valid CAS Registry Number.

317-66-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name propionyl-CoA

1.2 Other means of identification

Product number -
Other names Coenzyme A, S-propanoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:317-66-8 SDS

317-66-8Relevant articles and documents

Investigating the molecular determinants for substrate channeling in BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls degradation pathway

Carere, Jason,Baker, Perrin,Seah, Stephen Y. K.

, p. 8407 - 8416 (2011)

BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls (PCBs) degradation pathway, cleaves 4-hydroxy-2-oxoacids to pyruvate and an aldehyde. The enzyme complex was shown to exhibit substrate channeling, whereby linear aldehydes of up to 6 carbons long and branched isobutyraldehyde were directly channeled from the aldolase to the dehydrogenase with greater than 80% efficiency. BphI variants G322F, G322L, and G323F were created and were found to block aldehyde channeling. The dehydrogenase cofactor NADH was able to activate the catalytic activity of the aldol cleavage reaction in these variants, suggesting that activation of BphI by BphJ cofactors is not solely due to faster aldehyde release. A G323L variant was able to channel acetaldehyde but not the larger propionaldehyde while the G323A variant was able to channel butyraldehyde but not its isomer isobutyraldehyde, confirming that the restricted channeling of aldehydes in these glycine variants are due to steric blockage of the channel. Substitution of His-20 and Tyr-290 in BphI led to significant reductions in aldehyde channeling efficiencies. A mechanism of substrate channeling involving these two gating residues is proposed.

Establishing a toolkit for precursor-directed polyketide biosynthesis: Exploring substrate promiscuities of acid-CoA ligases

Go, Maybelle Kho,Chow, Jeng Yeong,Cheung, Vivian Wing Ngar,Lim, Yan Ping,Yew, Wen Shan

experimental part, p. 4568 - 4579 (2012/08/28)

Polyketides are chemically diverse and medicinally important biochemicals that are biosynthesized from acyl-CoA precursors by polyketide synthases. One of the limitations to combinatorial biosynthesis of polyketides has been the lack of a toolkit that describes the means of delivering novel acyl-CoA precursors necessary for polyketide biosynthesis. Using five acid-CoA ligases obtained from various plants and microorganisms, we biosynthesized an initial library of 79 acyl-CoA thioesters by screening each of the acid-CoA ligases against a library of 123 carboxylic acids. The library of acyl-CoA thioesters includes derivatives of cinnamyl-CoA, 3-phenylpropanoyl-CoA, benzoyl-CoA, phenylacetyl-CoA, malonyl-CoA, saturated and unsaturated aliphatic CoA thioesters, and bicyclic aromatic CoA thioesters. In our search for the biosynthetic routes of novel acyl-CoA precursors, we discovered two previously unreported malonyl-CoA derivatives (3-thiophenemalonyl-CoA and phenylmalonyl-CoA) that cannot be produced by canonical malonyl-CoA synthetases. This report highlights the utility and importance of determining substrate promiscuities beyond conventional substrate pools and describes novel enzymatic routes for the establishment of precursor-directed combinatorial polyketide biosynthesis. (Chemical Presented).

Substrate specificity, substrate channeling, and allostery in BphJ: An acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI

Baker, Perrin,Carere, Jason,Seah, Stephen Y. K.

experimental part, p. 4558 - 4567 (2012/09/10)

BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD + and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling. (Figure Presented).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 317-66-8