Welcome to LookChem.com Sign In|Join Free

CAS

  • or

329685-40-7

Post Buying Request

329685-40-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

329685-40-7 Usage

General Description

3-Phenyl-1-propylboronic acid pinacol ester, with a purity of 97%, is a chemical compound commonly used in pharmaceuticals and scientific research, particularly in the field of organic chemistry. It contains boronic acid paired with a pinacol ester, which makes it easier to handle and more resistant to air and moisture. 3-Phenyl-1-propylboronic acid pinacol ester, 97% is often engaged in the Suzuki reaction, a type of coupling reaction that's advantageous in creating complex molecular structures. It also plays a role in constructing various pharmaceutical drugs due to its functional group compatibility and high chemical stability. The "97%" signifies the purity level of this chemical compound, indicating that it includes 97% of the stated substance and 3% of other substances. Overall, this chemical is valuable in research settings for the synthesis of complex organic compounds.

Check Digit Verification of cas no

The CAS Registry Mumber 329685-40-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 3,2,9,6,8 and 5 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 329685-40:
(8*3)+(7*2)+(6*9)+(5*6)+(4*8)+(3*5)+(2*4)+(1*0)=177
177 % 10 = 7
So 329685-40-7 is a valid CAS Registry Number.

329685-40-7 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H28985)  3-Phenyl-1-propylboronic acid pinacol ester, 97%   

  • 329685-40-7

  • 250mg

  • 790.0CNY

  • Detail
  • Alfa Aesar

  • (H28985)  3-Phenyl-1-propylboronic acid pinacol ester, 97%   

  • 329685-40-7

  • 1g

  • 1700.0CNY

  • Detail
  • Alfa Aesar

  • (H28985)  3-Phenyl-1-propylboronic acid pinacol ester, 97%   

  • 329685-40-7

  • 5g

  • 5204.0CNY

  • Detail

329685-40-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 4,4,5,5-tetramethyl-2-(3-phenylpropyl)-1,3,2-dioxaborolane

1.2 Other means of identification

Product number -
Other names 2-(3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:329685-40-7 SDS

329685-40-7Relevant articles and documents

Method for directly preparing alkyl borate compound from alkyl halide

-

Paragraph 0253-0255, (2021/04/14)

The invention relates to a method for directly preparing an alkyl borate compound from an alkyl halide, which comprises the following steps: in a protective atmosphere, mixing a titanium metal catalyst, an alkali compound, a borate compound and an alkyl halide or sulfonate compound, reacting at 35-100 DEG C for 8-24 hours, so that the alkyl halide or sulfonate compound is directly converted into the alkyl boronic acid pinacol ester compound. The method is simple to operate, low in cost, good in functional group tolerance and wide in substrate application range.

Chromium-Catalyzed Borylative Coupling of Aliphatic Bromides with Pinacolborane by Hydrogen Evolution

Fu, Aiping,Li, Chao,Luo, Meiming,Zeng, Xiaoming,Zhao, Lixing

supporting information, p. 2204 - 2208 (2021/06/28)

The chromium-catalyzed borylative coupling between aliphatic bromides and pinacolborane (HBpin) is described. This reaction was promoted by low-cost and bench-stable CrCl3as a precatalyst combined with 4,4′-di-tert-butyl-2,2′-dipyridyl and aluminum, presenting a rare example of using HBpin as a borane reagent by coupling with alkyl bromides in forming borylated alkanes. Mechanistic studies indicate that aluminum plays important roles in the formation of reactive Cr species and aliphatic radicals, which lead to (alkyl)Cr by reaction with HBpin to give the products.

Evaluation of the role of graphene-based Cu(i) catalysts in borylation reactions

Cid, M. B.,Díaz, Cristina,Franco, Mario,Lamsabhi, Al Mokhtar,Sainz, Raquel,Tortosa, Mariola

, p. 3501 - 3513 (2021/06/06)

Carbon-supported catalysts have been considered as macromolecular ligands which modulate the activity of the metallic catalytic center. Understanding the properties and the factors that control the interactions between the metal and support allows a fine tuning of the catalyzed processes. Although huge effort has been devoted to comprehending binding energies and charge transfer for single atom noble metals, the interaction of graphenic surfaces with cheap and versatile Cu(i) salts has been scarcely studied. A methodical experimental and theoretical analysis of different carbon-based Cu(i) materials in the context of the development of an efficient, general, scalable, and sustainable borylation reaction of aliphatic and aromatic halides has been performed. We have also examined the effect of microwave (MW) radiation in the preparation of these type of materials using sustainable graphite nanoplatelets (GNP) as a support. A detailed analysis of all the possible species in solution revealed that the catalysis is mainly due to an interesting synergetic Cu2O/graphene performance, which has been corroborated by an extensive theoretical study. We demonstrated through DFT calculations at a high level of theory that graphene enhances the reactivity of the metal in Cu2O against the halide derivative favoring a radical departure from the halogen. Moreover, this material is able to stabilize radical intermediates providing unexpected pathways not observed using homogeneous Cu(i) catalysed reactions. Finally, we proved that other common carbon-based supports like carbon black, graphene oxide and reduced graphene oxide provided poorer results in the borylation process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 329685-40-7