Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4381-02-6

Post Buying Request

4381-02-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4381-02-6 Usage

Chemical Properties

light beige to beige-brown crystalline powder

Check Digit Verification of cas no

The CAS Registry Mumber 4381-02-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,3,8 and 1 respectively; the second part has 2 digits, 0 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 4381-02:
(6*4)+(5*3)+(4*8)+(3*1)+(2*0)+(1*2)=76
76 % 10 = 6
So 4381-02-6 is a valid CAS Registry Number.

4381-02-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-[2-(4-cyanophenyl)ethyl]benzonitrile

1.2 Other means of identification

Product number -
Other names Bibenzyl-4,4'-dicarbonitril

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4381-02-6 SDS

4381-02-6Relevant articles and documents

Salt-Stabilized Silylzinc Pivalates for Nickel-Catalyzed Carbosilylation of Alkenes

Chen, Kaixin,Dong, Shoucheng,Duan, Zhili,Li, Jie,Liu, Xingchen,Wang, Jixin

supporting information, (2022/03/03)

We herein report the preparation of solid and salt-stabilized silylzinc pivalates from the corresponding silyllithium reagents via transmetalation with Zn(OPiv)2. These resulting organosilylzinc pivalates show enhanced air and moisture stability and unique reactivity in the silylative difunctionalization of alkenes. Thus, a practical chelation-assisted nickel-catalyzed regioselective alkyl and benzylsilylation of alkenes has been developed, which provides an easy method to access alkyl silanes with broad substrate scope and wide functional group compatibility. Kinetic experiments highlight that the OPiv-coordination is crucial to improve the reactivity of silylzinc pivalates. Furthermore, late-stage functionalizations of druglike molecules and versatile modifications of the products illustrate the synthetical utility of this protocol.

Synthesis of dimeric molecules via ag-catalyzed electrochemical homocoupling of organic bromides paired with electrooxidation of urea

Klinkova, Anna,Krivoshapkina, Elena F.,Medvedev, Jury J.,Medvedeva, Xenia V.,Pivovarova, Yekaterina,Steksova, Yulia P.

, (2020/11/09)

We present a sacrificial anode-free approach to reductive homocoupling of organohalides that does not require a co-catalyst. In this approach, a divided electrochemical cell with aprotic and aqueous compartments separated by an anion exchange membrane enables coupling of the cathodic homocoupling reaction with anodic oxidation of urea. We show that, in contrast with traditional one-compartment cells relying on sacrificial anodes, the proposed cell configuration maintains stable cell voltage in the course of galvanostatic electrolysis. A synthetic potential of this method was assessed using a series of 13 organic bromides that demonstrated a strong dependence of the reaction outcome on the structure of the organic substrate, more specifically, the dissociation energy of the C–Br bond and the redox properties of formed radicals, which are discussed in detail. While not being suitable for the synthesis of byarylstructures, this method is excellent for C(sp3)-C(sp3) coupling to corresponding dimeric products with up to quantitative yields. Simultaneous electrochemical treatment of nitrogenous waste in the adjacent half-cell provides an additional incentive for wide adaptation of this sustainable synthetic approach.

Luminescent tungsten(vi) complexes as photocatalysts for light-driven C-C and C-B bond formation reactions

Chan, Kaai-Tung,Che, Chi-Ming,Du, Lili,Liu, Yungen,Phillips, David Lee,To, Wai-Pong,Tong, Glenna So Ming,Wu, Liang-Liang,Yu, Daohong

, p. 6370 - 6382 (2020/07/15)

The realization of photocatalysis for practical synthetic application hinges on the development of inexpensive photocatalysts which can be prepared on a large scale. Herein an air-stable, visible-light-absorbing photoluminescent tungsten(vi) complex which can be conveniently prepared at the gram-scale is described. This complex could catalyse photochemical organic transformation reactions including borylation of aryl halides, such as aryl chloride, reductive coupling of benzyl bromides for C-C bond formation, reductive coupling of phenacyl bromides, and decarboxylative coupling of redox-active esters of alkyl carboxylic acid with high product yields and broad functional group tolerance.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4381-02-6