Welcome to LookChem.com Sign In|Join Free

CAS

  • or

490-40-4

Post Buying Request

490-40-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

490-40-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 490-40-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,9 and 0 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 490-40:
(5*4)+(4*9)+(3*0)+(2*4)+(1*0)=64
64 % 10 = 4
So 490-40-4 is a valid CAS Registry Number.

490-40-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name α-D-Glcp-(1->6)-α-D-Glcp-(1->4)-D-Glcp

1.2 Other means of identification

Product number -
Other names α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->4)-D-glucopyranose

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:490-40-4 SDS

490-40-4Relevant articles and documents

Production of galacto-oligosaccharides by the β-galactosidase from kluyveromyces lactis: Comparative analysis of permeabilized cells versus soluble enzyme

Rodriguez-Colinas, Barbara,De Abreu, Miguel A.,Fernandez-Arrojo, Lucia,De Beer, Roseri,Poveda, Ana,Jimenez-Barbero, Jesus,Haltrich, Dietmar,Ballesteros Olmo, Antonio O.,Fernandez-Lobato, Maria,Plou, Francisco J.

experimental part, p. 10477 - 10484 (2012/07/17)

The transgalactosylation activity of Kluyveromyces lactis cells was studied in detail. Cells were permeabilized with ethanol and further lyophilized to facilitate the transit of substrates and products. The resulting biocatalyst was assayed for the synthesis of galacto-oligosaccharides (GOS) and compared with two soluble β-galactosidases from K. lactis (Lactozym 3000 L HP G and Maxilact LGX 5000). Using 400 g/L lactose, the maximum GOS yield, measured by HPAEC-PAD analysis, was 177 g/L (44% w/w of total carbohydrates). The major products synthesized were the disaccharides 6-galactobiose [Gal-β(1?6)-Gal] and allolactose [Gal-β(1?6)-Glc], as well as the trisaccharide 6-galactosyl-lactose [Gal-β(1?6)-Gal-β(1?4)-Glc], which was characterized by MS and 2D NMR. Structural characterization of another synthesized disaccharide, Gal-β(1?3)-Glc, was carried out. GOS yield obtained with soluble β-galactosidases was slightly lower (160 g/L for Lactozym 3000 L HP G and 154 g/L for Maxilact LGX 5000); however, the typical profile ith a maximum GOS concentration followed by partial hydrolysis of the newly formed oligosaccharides was not observed with the soluble enzymes. Results were correlated with the higher stability of β-galactosidase when permeabilized whole cells were used.

Difference in mode of inhibition between alpha-D-xylosyl beta-D-fructoside and alpha-isomaltosyl beta-D-fructoside in synthesis of glucan by Streptococcus mutans D-glucosyltransferase.

Nisizawa,Takeuchi,Imai,Kitahata,Okada

, p. 135 - 144 (2007/10/02)

Both alpha-isomaltosyl beta-D-fructoside and alpha-D-xylosyl beta-D-fructoside show strong inhibition of the synthesis of water-insoluble and water-soluble D-glucans from sucrose by a partially purified preparation of a D-glucosyltransferase (GTase) from Streptococcus mutans 6715; however, the inhibitory modes differ substantially. In the presence of alpha-isomaltosyl beta-D-fructoside, the production of reducing sugars and the consumption of sucrose are remarkably enhanced, compared with a control of sucrose alone. Under these conditions, a large proportion of low-molecular-weight glycan (lmwg) and a series of nonreducing oligosaccharides (both containing D-fructosyl groups or residues) are produced. In contrast, in the presence of alpha-D-xylosyl beta-D-fructoside, the production of reducing sugars and the sucrose consumption are strikingly suppressed, and no lmwg or oligosaccharides are produced. Thus, it may be concluded that alpha-isomaltosyl beta-D-fructoside acts as an alternative acceptor for the D-glucosyl and/or D-glucanosyl transfer reactions of the enzyme, and serves to lessen the formation of insoluble and soluble D-glucan, although it stimulates the transferring activity of the enzyme. On the other hand, alpha-D-xylosyl beta-D-fructoside competitively inhibits the sucrose-splitting activity of the enzyme as an analog to sucrose, and thereby diminishes the synthesis of D-glucan.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 490-40-4