Welcome to LookChem.com Sign In|Join Free

CAS

  • or

52204-65-6

Post Buying Request

52204-65-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

52204-65-6 Usage

Chemical Properties

Colorless transparent liquid

Check Digit Verification of cas no

The CAS Registry Mumber 52204-65-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,2,2,0 and 4 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 52204-65:
(7*5)+(6*2)+(5*2)+(4*0)+(3*4)+(2*6)+(1*5)=86
86 % 10 = 6
So 52204-65-6 is a valid CAS Registry Number.
InChI:InChI=1/C9H18O/c1-2-3-8-4-6-9(10)7-5-8/h8-10H,2-7H2,1H3

52204-65-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-Propylcyclohexanol

1.2 Other means of identification

Product number -
Other names 4-N-PROPYLCYCLOHEXANOL (CIS/TRANS MIXTURE)

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:52204-65-6 SDS

52204-65-6Relevant articles and documents

Aromatic compound hydrogenation and hydrodeoxygenation method and application thereof

-

Paragraph 0094-0095; 0123-0125; 0127-0130, (2021/05/29)

The invention belongs to the technical field of medicines, and discloses an aromatic compound hydrogenation and hydrodeoxygenation method under mild conditions and application of the method in hydrogenation and hydrodeoxygenation reactions of the aromatic compounds and related mixtures. Specifically, the method comprises the following steps: contacting the aromatic compound or a mixture containing the aromatic compound with a catalyst and hydrogen with proper pressure in a solvent under a proper temperature condition, and reacting the hydrogen, the solvent and the aromatic compound under the action of the catalyst to obtain a corresponding hydrogenation product or/and a hydrodeoxygenation product without an oxygen-containing substituent group. The invention also discloses specific implementation conditions of the method and an aromatic compound structure type applicable to the method. The hydrogenation and hydrodeoxygenation reaction method used in the invention has the advantages of mild reaction conditions, high hydrodeoxygenation efficiency, wide substrate applicability, convenient post-treatment, and good laboratory and industrial application prospects.

Selective hydrogenation of lignin-derived compounds under mild conditions

Chen, Lu,Van Muyden, Antoine P.,Cui, Xinjiang,Laurenczy, Gabor,Dyson, Paul J.

, p. 3069 - 3073 (2020/06/17)

A key challenge in the production of lignin-derived chemicals is to reduce the energy intensive processes used in their production. Here, we show that well-defined Rh nanoparticles dispersed in sub-micrometer size carbon hollow spheres, are able to hydrogenate lignin derived products under mild conditions (30 °C, 5 bar H2), in water. The optimum catalyst exhibits excellent selectivity and activity in the conversion of phenol to cyclohexanol and other related substrates including aryl ethers.

Low-Temperature Catalytic Hydrogenolysis of Guaiacol to Phenol over Al-Doped SBA-15 Supported Ni Catalysts

Wang, Qiuyue,Chen, Yufang,Yang, Guanheng,Deng, Ping,Lu, Xinqing,Ma, Rui,Fu, Yanghe,Zhu, Weidong

, p. 4930 - 4938 (2020/08/26)

Selective hydrogenolysis of aromatic carbon-oxygen (Caryl?O) bonds is a key strategy for the generation of aromatic chemicals from lignin. However, this process is usually operated at high temperatures and pressures over hydrogenation catalysts, resulting in a low selectivity for aromatics and an extra consumption of hydrogen. Here, a series of Al-doped SBA-15 mesoporous materials with different Si/Al molar ratios (Al-SBA-15) were prepared via a post-synthesis method using NaAlO2 as the Al source, and then Al-SBA-15 supported Ni catalysts (Ni/Al-SBA-15) were prepared by a deposition-precipitation method using urea as the hydrolysis reagent. The prepared supports and catalysts were extensively characterized using various techniques such as XRD, N2 adsorption/desorption, TEM, 27Al NMR, NH3-TPD, XPS, H2-TPR, and pyridine-FT-IR, and the catalysts were evaluated in the hydrogenolysis of the Caryl?O bond in guaiacol and lignin derived compounds under mild conditions. The effects of the Si/Al ratio in catalyst and reaction parameters on guaiacol conversion and product distribution were investigated in detail, associated with solvent effect. The incorporation of Al into the framework of SBA-15 can improve the Lewis acidity and the dispersion of the supported Ni particles and yet modulate the metal-support interactions, which are propitious to the hydrogenolysis of the Caryl?O bond in guaiacol. The catalyst Ni/Al-SBA-15 with a Si/Al molar ratio of 10 shows the best performance with a guaiacol conversion of 87.4 % and a phenol selectivity of 76.9 % under the mild conditions conducted, because of its proper acidity, suitable metal-support interactions, and high dispersion of the active species. The present study would stimulate research and development in multi-functional catalysts for the generation of valuable chemicals from biomass.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 52204-65-6