Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7291-01-2

Post Buying Request

7291-01-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7291-01-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7291-01-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,2,9 and 1 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 7291-01:
(6*7)+(5*2)+(4*9)+(3*1)+(2*0)+(1*1)=92
92 % 10 = 2
So 7291-01-2 is a valid CAS Registry Number.
InChI:InChI=1/C9H10N2O3/c1-10(2)9(12)7-3-5-8(6-4-7)11(13)14/h3-6H,1-2H3

7291-01-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N,N-dimethyl-4-nitrobenzamide

1.2 Other means of identification

Product number -
Other names N,N-dimethyl-p-nitrobenzoamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7291-01-2 SDS

7291-01-2Relevant articles and documents

Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst-free synthesis of various substituted amines

Yi, Jaeeun,Kim, Hyun Tae,Jaladi, Ashok Kumar,An, Duk Keun

supporting information, p. 129 - 132 (2021/11/17)

Transformation of relatively less reactive functional groups under catalyst-free conditions is an interesting aspect and requires a typical protocol. Herein, we report the synthesis of various primary, secondary, and tertiary amines through hydroboration of amides using pinacolborane under catalyst-free and solvent-free conditions. The deoxygenative hydroboration of primary and secondary amides proceeded with excellent conversions. The comparatively less reactive tertiary amides were also converted to the corresponding N,N-diamines in moderate yields under catalyst-free conditions, although alcohols were obtained as a minor product.

Cobalt-Catalyzed Deoxygenative Hydroboration of Nitro Compounds and Applications to One-Pot Synthesis of Aldimines and Amides

Gudun, Kristina A.,Zakarina, Raikhan,Segizbayev, Medet,Hayrapetyan, Davit,Slamova, Ainur,Khalimon, Andrey Y.

supporting information, p. 601 - 611 (2021/11/30)

The commercially available and bench-stable Co(acac)2 ligated with bis[(2-diphenylphosphino)phenyl] ether (dpephos) was employed for selective room temperature hydroboration of nitro compounds with HBPin (TOF up to 4615 h?1), tolerating halide, hydroxy, amino, ether, ester, lactone, amide and heteroaromatic functionalities. These reactions offered a direct access to a variety of N-borylamines RN(H)BPin, which were in situ treated with aldehydes and carboxylic acids to produce a series of aldimines and secondary carboxamides without the need for dehydrating and/or coupling reagents. Combination of these transformations in a sequential one-pot manner allowed for direct and selective synthesis of aldimines and secondary carboxamides from readily available and inexpensive nitro compounds.

Ipso Nitration of Aryl Boronic Acids Using Fuming Nitric Acid

Baucom, Kyle D.,Brown, Derek B.,Caille, Seb,Murray, James I.,Quasdorf, Kyle,Silva Elipe, Maria V.

supporting information, (2021/06/30)

The ipso nitration of aryl boronic acid derivatives has been developed using fuming nitric acid as the nitrating agent. This facile procedure provides efficient and chemoselective access to a variety of aromatic nitro compounds. While several activating agents and nitro sources have been reported in the literature for this synthetically useful transformation, this report demonstrates that these processes likely generate a common active reagent, anhydrous HNO3. Kinetic and mechanistic studies have revealed that the reaction order in HNO3 is >2 and indicate that the ?NO2 radical is the active species.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7291-01-2