Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7329-77-3

Post Buying Request

7329-77-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7329-77-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7329-77-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,3,2 and 9 respectively; the second part has 2 digits, 7 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 7329-77:
(6*7)+(5*3)+(4*2)+(3*9)+(2*7)+(1*7)=113
113 % 10 = 3
So 7329-77-3 is a valid CAS Registry Number.

7329-77-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-stilbene carboxylic acid

1.2 Other means of identification

Product number -
Other names stilbene-4-carboxylic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7329-77-3 SDS

7329-77-3Relevant articles and documents

NiFe2O4@SiO2@ZrO2/SO42-/Cu/Co nanoparticles: A novel, efficient, magnetically recyclable and bimetallic catalyst for Pd-free Suzuki, Heck and C-N cross-coupling reactions in aqueous media

Alavi G., Seyyedeh Ameneh,Nasseri, Mohammad Ali,Kazemnejadi, Milad,Allahresani, Ali,Hussainzadeh, Mahdi

, p. 7741 - 7757 (2021/05/13)

The novel heterogeneous bimetallic nanoparticles of Cu-Co were synthesized based on magnetic nanoparticles, and the magnetic nanocatalyst was characterized by XRD, FE-SEM, EDX mapping, BET, TEM, HRTEM, FTIR, TGA, and VSM. This catalyst was successfully applied as a recyclable magnetically catalyst in Heck, Suzuki, and C-N cross-coupling reactions with various aryl halides (iodides, bromides, and chlorides as challengeable substrates), with olefins, phenylboronic acid, and amines, respectively. We considered the rise of synergetic effects from the different Lewis acid and Br?nsted acid sites present in the catalyst. The catalyst was synthesized with cheap, available materials and a simple synthesis method. The catalyst can be separated easily using an external magnet. It was recycled for more than ten runs without a sensible loss of its catalytic activity, and no significant leaching of the Cu and Co quantity was observed. The significant benefits of the method are high-level generality, simple operation, and there are no heavy metals and toxic solvents. This is a quick, easy, efficacious and environmentally friendly protocol, and no by-products are formed in the reaction. These features make it an appropriate practical alternative protocol. In comparison with recent works, the other advantage of this catalyst is the synthesis of a wide variety of C-C and C-N bond derivatives (more than 40 derivatives). The other significant advantage is the low temperature of the reaction and the use of the least possible amount of the catalyst (0.003 g). The efficiency was good to excellent and the catalyst selectivity has been high. We aspire that our study inspires more interest to design novel catalysts based on using low-cost metal ions (such as cobalt and copper) in the cross-coupling reactions. This journal is

Synthesis of Pd@graphene oxide framework nanocatalyst with enhanced activity in Heck-Mizoroki cross-coupling reaction

Shekarizadeh, Arezoo,Azadi, Roya

, (2020/05/22)

A new method was developed for producing a catalyst involving a Pd nanoparticle (NP) embedded in a graphene oxide framework (Pd@GOF) with ordered macro- and mesoporous structures. First, 5,5′-diamino-2,2′-bipyridine was selected as cross-linking for covalent modification of GO nanosheets to prepare a three-dimensional (3D) framework with interlayer spaces in which well-dispersed and ultra-small Pd NPs in situ grew and embedded the framework. The synthesized nanopores 3D Pd@GOF can act as nanoreactors to help the reaction substrates thoroughly come into contact with the surface of Pd NPs, thereby exhibiting high activity toward the Heck reaction, rarely reported concerning Pd NPs supported on one-side functionalized graphene. The Pd@GOF catalyst can be used 10 times without any significant loss in the catalytic activity, confirming the long-term stability of this catalyst. Therefore, the covalently assembled GOF was proposed as a universal platform for hosting noble metal NPs to construct the desired metal@GOF nanocatalyst with improved activity and stability that can be used in a broad range of practical applications.

A highly active nickel-fibre complex as a catalyst for the Heck reaction

Wu, Zhi-Chuan,Yang, Quan,Chen, Meng,Liu, Li,Tao, Ting-Xian

, p. 164 - 166 (2016/04/20)

A new amidoxime fibre-nickel catalyst (AOFs-Ni(0)) was synthesised by a coordination and reduction reaction. The X-ray diffraction patterns indicated that the Ni(II) ions were reduced to Ni(0). The scanning electron microscope image showed that the Ni(0) particles which were reduced in situ had a diameter of about 300 nm. This catalyst demonstrated high activity in the Heck coupling reaction of aryl iodine and conjugated alkenes without the protection of an inert atmosphere.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7329-77-3