Welcome to LookChem.com Sign In|Join Free

CAS

  • or

54446-36-5

Post Buying Request

54446-36-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

54446-36-5 Usage

Chemical Properties

White solid

Check Digit Verification of cas no

The CAS Registry Mumber 54446-36-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,4,4,4 and 6 respectively; the second part has 2 digits, 3 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 54446-36:
(7*5)+(6*4)+(5*4)+(4*4)+(3*6)+(2*3)+(1*6)=125
125 % 10 = 5
So 54446-36-5 is a valid CAS Registry Number.
InChI:InChI=1/C12H10BrN/c13-10-6-8-12(9-7-10)14-11-4-2-1-3-5-11/h1-9,14H

54446-36-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-Bromodiphenylamine

1.2 Other means of identification

Product number -
Other names 4-bromo-N-phenylaniline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:54446-36-5 SDS

54446-36-5Relevant articles and documents

High performance white organic light-emitting diodes with blue fluorescence and red phosphorescence

Lee, Hayoon,Kang, Hyeonmi,Jung, Hyocheol,Kang, Seokwoo,Park, Jongwook

, p. 5751 - 5754 (2017)

Highly efficient blue emitting material (DAnP) consisting of anthracene and pyrene was designed and synthesized. The PLmax of the DAnP is 469 nm in the solution state and 480 nm in the film state. DAnP was used as non-doped emitting layer (EMLs) in OLEDs with the following structures: ITO/2-TNATA (60 nm)/NPB (15 nm)/DAnP (35 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). The DAnP device has current efficiency of 5.45 cd/A, power efficiency of 2.71 lm/W, and CIEs of (0.19, 0.40) at 10 mA/cm2. An efficient multilayer white organic light-emitting diode (WOLED) with the structure of ITO/NPB (30 nm)/CBP: 3 wt% Ir(piq)3 (10 nm)/DAnP (40 nm)/TPBi (40 nm)/LiF (1 nm)/Al (200 nm) was fabricated and characterized, where DAnP and tris(1-phenylisoquinoline) iridium (III) [Ir(piq)3] were used as a blue fluorescent emitter and a red phosphorescent emitter respectively. A WOLED showed current efficiency of 5.08 cd/A, power efficiency of 2.55 lm/W, and CIEs of (0.35, 0.36) at 10 mA/cm2.

Chitosan nanoparticles functionalized poly-2-hydroxyaniline supported CuO nanoparticles: An efficient heterogeneous and recyclable nanocatalyst for N-arylation of amines with phenylboronic acid at ambient temperature

Seyedi, Neda,Zahedifar, Mahboobeh

, (2021/07/25)

The present study aims to prepare an effective and eco-friendly nanocatalyst for the Chan–Lam coupling reaction of phenylboronic acid and amine in aerobic conditions. For this purpose, chitosan was extracted from shrimp shells waste by demineralization, deproteinization, and deacetylation processes and then converted to chitosan nanoparticles (CSN) by the ionic gelation with tripolyphosphate anions. Afterward, poly-2-hydroxyaniline (P2-HA) was grafted to chitosan nanoparticles (NPs) to employ as the support for CuO NPs. Characterization of the nanocatalyst was done using Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), mapping, energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The CuO NPs were identified in the spherical shape with an average size of 17 nm. The prepared nanocatalyst exhibited excellent catalytic performance with a high turnover number (TON) and turnover frequency (TOF) for the Chan–Lam coupling reaction of phenyl boronic acid and amines with different electronic properties. The prepared catalyst could be readily recovered and reused for at least five runs without any noticeable change in structure and catalytic performance. Chitosan (CS) was prepared via demineralization, deproteinization, and deacetylation of shrimp shell and chitosan nanoparticles (CSN) were prepared via ionic gelation process. Polymerization of 2-HA on the CSN surface was done to increase functional groups and create active sites for CuO NPs attachments. CuO NPs-P2-HA-CSN nanocomposite has been shown high efficiently for the Chan–Lam coupling reaction.

Schiff bases-titanium (III) & (IV) complex compounds: Novel photocatalysts in Buchwald-Hartwig C–N cross-coupling reaction

Absalan, Yahya,Ghandi, Khashayar,Gholizadeh, Mostafa,Kovalchukova, Olga,Mahmoudi, Ghodrat,Sarvestani, Hossein Sabet,Shad, Nazanin Noroozi,Strashnov, Pavel

, (2021/05/21)

Nine novel Schiff bases were derived from salicylic aldehyde and oxalic aldehyde, isolated, and their molecular and spatial structure were explored by a set of experiments (IR, CNMR, HNMR, CHN, SEM, XRD) and theoretical simulation (DFT def2-TZVP). A high potential was predicted in metal cations chelating. The isolated organic species were applied as the ligands in the reaction of complex formation with titanium (III) chloride and (IV) bromide and 12 novel complexes were synthesized and studied experimentally and theoretically. Using the UV–vis spectroscopic titration, the solution stability of the complexes was indicated. Depending on the nature of the Schiff base ligand, their formation constants were calculated in the range of 6.84–17.32. Using the DFT def2-TZVP theoretical method together with the experimental spectroscopic data, the coordination types of the ligands were investigated, and the structure of the complexes was proposed. The photocatalytic ability of the isolated complexes was tested in the C-N cross-coupling reaction under sunlight. Complexes exhibited high visible-light photocatalytic activity for a wide range of aromatic and benzylic amines including electron-withdrawing and electron-donating groups from moderate to good yields ranging in 50–85 %. The use of an inexpensive, clean, and renewable energy source (visible light) is the superiority of the developed photocatalytic systems.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 54446-36-5