Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2403-54-5

Post Buying Request

2403-54-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2403-54-5 Usage

General Description

2-(4-Chlorophenyl)-1,3-dioxolane, also known as Dioxolane, is a chemical compound with the molecular formula C8H7ClO2. It is a colorless liquid with a sweet odor, commonly used as a solvent and in the manufacturing of pharmaceuticals and agrochemicals. Dioxolane is also used as an intermediate in the synthesis of other organic compounds. It is important to handle this chemical with care as it may cause skin and eye irritation upon contact. Furthermore, it is important to take proper safety precautions when working with this compound, as prolonged or repeated exposure may lead to harmful effects on health.

Check Digit Verification of cas no

The CAS Registry Mumber 2403-54-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,4,0 and 3 respectively; the second part has 2 digits, 5 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 2403-54:
(6*2)+(5*4)+(4*0)+(3*3)+(2*5)+(1*4)=55
55 % 10 = 5
So 2403-54-5 is a valid CAS Registry Number.
InChI:InChI=1/C9H9ClO2/c10-8-3-1-7(2-4-8)9-11-5-6-12-9/h1-4,9H,5-6H2

2403-54-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(4-Chlorophenyl)-1,3-dioxolane

1.2 Other means of identification

Product number -
Other names 4-chlorobenzaldehyde ethylene acetal

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2403-54-5 SDS

2403-54-5Relevant articles and documents

Application of poly(Vinylbenzyltrimethylammonium tribromide) resin as an efficient polymeric catalyst in the acetalization and diacetylation of benzaldehydes

Han, Bingbing,Hu, Junjun,Li, Xianwei,Zheng, Zubiao

supporting information, p. 287 - 293 (2021/04/28)

The applications of a new supported tribromide reagent (poly(vinylbenzyltrimethylammonium tribromide) resin) were reported. This supported tribromide resin was used as a catalyst in the acetalization and diacetylation of benzaldehydes under mild conditions with high efficiency. The effects of solvents, and amount of the supported tribromide resin on the reactions were investigated. Under the optimal conditions, most of acetal and 1,1-diacetates of benzaldehydes were selectively obtained in excellent yields.

Robust acidic pseudo-ionic liquid catalyst with self-separation ability for esterification and acetalization

Shi, Yingxia,Liang, Xuezheng

, p. 1413 - 1421 (2019/05/04)

The novel acidic pseudo-ionic liquid catalyst with self-separation ability has been synthesized through the quaternization of triphenylphosphine and the acidification with silicotungstic acid. The pseudo-IL showed high activities for the esterification with average conversions over 90%. The pseudo-IL showed even higher activities for acetalization than traditional sulfuric acid. The homogeneous catalytic process benefited the mass transfer efficiency. The pseudo-IL separated from the reaction mixture automatically after reactions, which was superior to other IL catalysts. The high catalytic activities, easy reusability and high stability were the key properties of the novel catalyst, which hold great potential for green chemical processes.

Utilization of 1,3-Dioxolanes in the Synthesis of α-branched Alkyl and Aryl 9-[2-(Phosphonomethoxy)Ethyl]Purines and Study of the Influence of α-branched Substitution for Potential Biological Activity

Pomeisl, Karel,Pohl, Radek,Snoeck, Robert,Andrei, Graciela,Kre?merová, Marcela

, p. 119 - 156 (2019/01/04)

Syntheses of α-branched alkyl and aryl substituted 9-[2-(phosphonomethoxy)ethyl]purines from substituted 1,3-dioxolanes have been developed. Key synthetic precursors, α-substituted dialkyl [(2-hydroxyethoxy)methyl]phosphonates were prepared via Lewis acid mediated cleavage of 1,3-dioxolanes followed by reaction with dialkyl or trialkyl phosphites. The best preparative yields were achieved under conditions utilizing tin tetrachloride as Lewis acid and triisopropyl phosphite. Attachment of purine bases to dialkyl [(2-hydroxyethoxy)methyl]phosphonates was performed by Mitsunobu reaction. Final α-branched 9-[2-(phosphonomethoxy)ethyl]purines were tested for antiviral, cytostatic and antiparasitic activity, the latter one determined as inhibitory activity towards Plasmodium falciparum enzyme hypoxanthine-guanine-xanthine phosphoribosyltransfesase. In most cases biological activity was only marginal.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2403-54-5