Welcome to LookChem.com Sign In|Join Free

CAS

  • or

34158-76-4

Post Buying Request

34158-76-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

34158-76-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 34158-76-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,4,1,5 and 8 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 34158-76:
(7*3)+(6*4)+(5*1)+(4*5)+(3*8)+(2*7)+(1*6)=114
114 % 10 = 4
So 34158-76-4 is a valid CAS Registry Number.

34158-76-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(2-chlorobenzylidene)-2-phenylhydrazine

1.2 Other means of identification

Product number -
Other names o-Chlorobenzaldehydphenylhydrazon

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:34158-76-4 SDS

34158-76-4Relevant articles and documents

Identification of novel 1,3-diaryl-1,2,4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity

Zhang, Xin-Hui,Kang, Hui-Qin,Tao, Yuan-Yuan,Li, Yi-Han,Zhao, Jun-Ru,Ya-Gao,Ma, Li-Ying,Liu, Hong-Min

, (2021/04/12)

Histone deacetylase 6 (HDAC6) has emerged as a critical regulator of many cellular pathways in tumors due to its unique structure basis and abundant substrate types. Over the past few decades, the role played by HDAC6 inhibitors as anticancer agents has sparked great interest of biochemists worldwide. However, they were less reported for gastric cancer therapy. In this paper, with the help of bioisosteric replacement, in-house library screening, and lead optimization strategies, we designed, synthesized and verified a series of 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors with promising anti-gastric cancer activities. Amongst, compound 9r displayed the best inhibitory activity towards HDAC6 (IC50 = 30.6 nM), with 128-fold selectivity over HDAC1. Further BLI and CETSA assay proved the high affinity of 9r to HDAC6. In addition, 9r could dose-dependently upregulate the levels of acetylated α-tubulin, without significant effect on acetylated histone H3 in MGC803 cells. Besides, 9r exhibited potent antiproliferative effect on MGC803 cells, and promoted apoptosis and suppressed the metastasis without obvious toxicity, suggesting 9r would serve as a potential lead compound for the development of novel therapeutic agents of gastric cancer.

From Phenylhydrazone to 1H-1,2,4-Triazoles via Nitrification, Reduction and Cyclization

Hao, Liqiang,Wang, Guodong,Sun, Jian,Xu, Jun,Li, Hongshuang,Duan, Guiyun,Xia, Chengcai,Zhang, Pengfei

supporting information, p. 1657 - 1662 (2020/03/19)

Herein we report an annulation of phenylhydrazone via a tandem nitrification, reduction, cyclization protocol employing cobalt nitrate and 1,2-dichloroethane to produce substituted 1H-1,2,4-triazoles. Notably, 1,2-dichloroethane serves both the solvent and a hydrogen source for transfer hydrogenation. This methodology works under mild conditions, providing a direct approach for the synthesis of 1H-1,2,4-triazoles. (Figure presented.).

Fe+3-montmorillonite K10 as an Efficient Reusable Heterogeneous Catalyst for the Grind Mediated Synthesis of 14-aryl-14H-dibenzo [a,j]xanthenes

Fekri, Leila Z.,Nikpassand, Mohammad,Fard, Hajar S.,Marvi, Omid

, p. 135 - 142 (2016/03/01)

Background: Xanthenes are an important class of organic compounds and have also received significant attention due to their wide range of pharmacological activities such as antibacterial, antiviral, antiinflammatory activities, antagonists for the paralyzing action of zoxazolamine and efficiency in photodynamic therapy, a well-known method for controlling the localized tumors. Natural sources are also rich of xanthene compounds. Popularly known pigments, santalin have been isolated from plant species. Furthermore, these compounds can be emerged as pH-sensitive fluorescent materials for visualization of biomolecules, in laser technologies and as dyes. There are several reports in the literature for the synthesis of xanthenes such as alkylations of heteroatoms, cyclodehydrations, cyclocondensations between 2-hydroxyaromatic aldehydes and 2- tetralone, trapping of benzynes by phenols and intramolecular phenyl-carbonyl coupling reactions of benzaldehydes and acetophenones bearing tethered carbonyl chains in the presence of hexamethylphosphoramide and SmI2. Other methods for the synthesis of xanthenes include the reaction of formamide with β-naphthol, carbon monoxide, and 1- hydroxymethyl-naphthalen-2-ol. Methods: procedure a: A mixture of substituted benzaldehyde, 2-naphtol and Fe+3-montmorillonite K10 was mixed. After completion of the reaction, the product was solved in CHCl3 (3×10 mL) and insoluble catalyst was removed by filtration. The organic phase including the product and chloroform was evaporated under vacuum. The resulting crude material was purified by recrystallization from EtOH to afford pure products. procedure b: A mixture of substituted benzaldehyde, phenylhydrazine and Fe+3-montmorillonite K10 were added to a mortar and the mixture was pulverized with a pestle. After completion of the reaction, 2-naphtol was added to the consulting mixture and pulverized with a pestle. The organic phase including the product and chloroform was evaporated under vacuum. The resulting crude material was purified by recrystallization from EtOH to afford pure products. Results: As part of our going interest for the development of efficient and environmentally friendly procedures for the synthesis of heterocyclic and pharmaceutical compounds, we wish to report the first grind mediated synthesis of some derivatives of xanthenes using catalytic amount of Fe+3-montmotillonite. Conclusion: In conclusion, we have investigated the Fe+3-montmorillonite K10 under grinding as a mild and efficient catalyst for the synthesis of substituted 14-aryl-14H-dibenzo [a,j]xanthenes. The remarkable advantages offered by this method are: catalyst is inexpensive, non-toxic, easy handling and reusability, simple work-up procedure, short reaction time, high yields of product with better purity and green aspect by avoiding toxic catalyst and hazardous solvent.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 34158-76-4