Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6908-41-4

Post Buying Request

6908-41-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6908-41-4 Usage

Chemical Properties

WHITE POWDER OR CRYSTALS

Uses

Methyl 4-(hydroxymethyl)benzoate was used in the synthesis of keto acid.

Check Digit Verification of cas no

The CAS Registry Mumber 6908-41-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,9,0 and 8 respectively; the second part has 2 digits, 4 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 6908-41:
(6*6)+(5*9)+(4*0)+(3*8)+(2*4)+(1*1)=114
114 % 10 = 4
So 6908-41-4 is a valid CAS Registry Number.
InChI:InChI=1/C9H10O3/c1-12-9(11)8-4-2-7(6-10)3-5-8/h2-5,10H,6H2,1H3

6908-41-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B22564)  Methyl (4-hydroxymethyl)benzoate, 99%   

  • 6908-41-4

  • 5g

  • 192.0CNY

  • Detail
  • Alfa Aesar

  • (B22564)  Methyl (4-hydroxymethyl)benzoate, 99%   

  • 6908-41-4

  • 25g

  • 823.0CNY

  • Detail

6908-41-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name Methyl 4-(hydroxymethyl)benzoate

1.2 Other means of identification

Product number -
Other names methyl 4-(hydroxymethyl)benzoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6908-41-4 SDS

6908-41-4Relevant articles and documents

Visible Light Induced Reduction and Pinacol Coupling of Aldehydes and Ketones Catalyzed by Core/Shell Quantum Dots

Xi, Zi-Wei,Yang, Lei,Wang, Dan-Yan,Feng, Chuan-Wei,Qin, Yufeng,Shen, Yong-Miao,Pu, Chaodan,Peng, Xiaogang

, p. 2474 - 2488 (2021/02/05)

We present an efficient and versatile visible light-driven methodology to transform aryl aldehydes and ketones chemoselectively either to alcohols or to pinacol products with CdSe/CdS core/shell quantum dots as photocatalysts. Thiophenols were used as proton and hydrogen atom donors and as hole traps for the excited quantum dots (QDs) in these reactions. The two products can be switched from one to the other simply by changing the amount of thiophenol in the reaction system. The core/shell QD catalysts are highly efficient with a turn over number (TON) larger than 4 × 104 and 4 × 105 for the reduction to alcohol and pinacol formation, respectively, and are very stable so that they can be recycled for at least 10 times in the reactions without significant loss of catalytic activity. The additional advantages of this method include good functional group tolerance, mild reaction conditions, the allowance of selectively reducing aldehydes in the presence of ketones, and easiness for large scale reactions. Reaction mechanisms were studied by quenching experiments and a radical capture experiment, and the reasons for the switchover of the reaction pathways upon the change of reaction conditions are provided.

KB3H8: An environment-friendly reagent for the selective reduction of aldehydes and ketones to alcohols

Li, Xinying,Mi, Tongge,Guo, Wenjing,Ruan, Zhongrui,Guo, Yu,Ma, Yan-Na,Chen, Xuenian

supporting information, p. 12776 - 12779 (2021/12/10)

Selective reduction of aldehydes and ketones to their corresponding alcohols with KB3H8, an air- and moisture-stable, nontoxic, and easy-to-handle reagent, in water and THF has been explored under an air atmosphere for the first time. Control experiments illustrated the good selectivity of KB3H8 over NaBH4 for the reduction of 4-acetylbenzaldehyde and aromatic keto esters. This journal is

Ruthenium(II) Complex of a Tridentate Azoaromatic Pincer Ligand and its Use in Catalytic Transfer Hydrogenation of Aldehydes and Ketones with Isopropanol

Saha, Tanushri,Prasad Rath, Santi,Goswami, Sreebrata

, p. 1455 - 1461 (2021/05/18)

In this work, a new Ru(II) complex with the redox-active pincer 2,6-bis(phenylazo)pyridine ligand (L) is reported which acts as a metal-ligand bifunctional catalyst for transfer hydrogenation reactions. The isolated complex [(L)Ru(PMe2Ph)2(CH3CN)](ClO4)2; [1](ClO4)2 is characterized by a host of spectroscopic measurements and X-ray structure determination. It is diamagnetic and single-crystal X-ray structure analysis reveals that [1]2+ adopts a distorted octahedral geometry where L binds Ru center in meridional fashion. The observed elongation in the coordinated azo bond length (1.29 ?) is attributed to the extensive π-back bonding, dπ(RuII)→π*(azo)L. The complex [1](ClO4)2 acts as an efficient catalyst, which brings about catalytic transfer hydrogenation reactions of a broad array of aldehydes and ketones in isopropanol and in inert conditions. The selectivity of the catalyst for aldehyde reduction over the other reducible functional groups such as nitro, nitrile, ester etc was also investigated. Mechanistic studies, examined by suitable control reactions and isotope labelling experiments, indicate synergistic participation of both ligand and metal centres via the formation of a fleeting Ru?H intermediate and hydrogen walking to the coordinated azo function of L.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6908-41-4