Welcome to LookChem.com Sign In|Join Free

CAS

  • or

588-56-7

Post Buying Request

588-56-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

588-56-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 588-56-7 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,8 and 8 respectively; the second part has 2 digits, 5 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 588-56:
(5*5)+(4*8)+(3*8)+(2*5)+(1*6)=97
97 % 10 = 7
So 588-56-7 is a valid CAS Registry Number.

588-56-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name N,N-Dimethylethanamine

1.2 Other means of identification

Product number -
Other names trans-4,4'-difluorostilbene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:588-56-7 SDS

588-56-7Relevant articles and documents

Energy-Transfer-Mediated Photocatalysis by a Bioinspired Organic Perylenephotosensitizer HiBRCP

Zhang, Yan,Xia, Mingze,Li, Min,Ping, Qian,Yuan, Zhenbo,Liu, Xuanzhong,Yin, Huimin,Huang, Shuping,Rao, Yijian

, p. 15284 - 15297 (2021/11/01)

Energy transfer plays a special role in photocatalysis by utilizing the potential energy of the excited state through indirect excitation, in which a photosensitizer determines the thermodynamic feasibility of the reaction. Bioinspired by the energy-transfer ability of natural product cercosporin, here we developed a green and highly efficient organic photosensitizer HiBRCP (hexaisobutyryl reduced cercosporin) through structural modification of cercosporin. After structural manipulation, its triplet energy was greatly improved, and then, it could markedly promote the efficient geometrical isomerization of alkenes from the E-isomer to the Z-isomer. Moreover, it was also effective for energy-transfer-mediated organometallic catalysis, which allowed realization of the cross-coupling of aryl bromides and carboxylic acids through efficient energy transfer from HiBRCP to nickel complexes. Thus, the study on the relationship between structural manipulation and their photophysical properties provided guidance for further modification of cercosporin, which could be applied to more meaningful and challenging energy-transfer reactions.

AIR-STABLE NI(0)-OLEFIN COMPLEXES AND THEIR USE AS CATALYSTS OR PRECATALYSTS

-

Page/Page column 13; 14, (2021/02/05)

The present invention relates to air stable, binary Ni(0)-olefin complexes and their use in organic synthesis.

Tuning the Selectivity of Palladium Catalysts for Hydroformylation and Semihydrogenation of Alkynes: Experimental and Mechanistic Studies

Beller, Matthias,Ge, Yao,Jackstell, Ralf,Jiao, Haijun,Liu, Jiawang,Wei, Duo,Wei, Zhihong,Yang, Ji

, p. 12167 - 12181 (2020/11/27)

Here, we describe a selective palladium catalyst system for chemodivergent functionalization of alkynes with syngas. In the presence of an advanced ligand L2 bearing 2-pyridyl substituent as a built-in base, either hydroformylation or semihydrogenation of diverse alkynes occurs with high chemo- and stereoselectivity under comparable conditions. Mechanistic studies, including density functional theory (DFT) calculations, kinetic analysis, and control experiments, revealed that the strength and concentration of acidic cocatalysts play a decisive role in controlling the chemoselectivity. DFT studies disclosed that ligand L2 not only promotes heterolytic activation of hydrogen similar to frustrated Lewis pair (FLP) systems in the hydrogenolysis step for hydroformylation but also suppresses CO coordination to promote semihydrogenation under strong acid conditions. This switchable selectivity provides a strategy to design new catalysts for desired products.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 588-56-7