Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6531-13-1

Post Buying Request

6531-13-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6531-13-1 Usage

Synthesis Reference(s)

The Journal of Organic Chemistry, 54, p. 949, 1989 DOI: 10.1021/jo00265a040Tetrahedron Letters, 24, p. 2575, 1983 DOI: 10.1016/S0040-4039(00)81985-1

Check Digit Verification of cas no

The CAS Registry Mumber 6531-13-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,5,3 and 1 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 6531-13:
(6*6)+(5*5)+(4*3)+(3*1)+(2*1)+(1*3)=81
81 % 10 = 1
So 6531-13-1 is a valid CAS Registry Number.
InChI:InChI=1/C8H9NO3/c1-6(10)7-2-4-8(5-3-7)9(11)12/h2-6,10H,1H3

6531-13-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-NITROPHENYL)ETHANOL

1.2 Other means of identification

Product number -
Other names 4-(NO2)C6H4CH(OH)Me

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6531-13-1 SDS

6531-13-1Relevant articles and documents

Polyoxometalate-Incorporated Framework as a Heterogeneous Catalyst for Selective Oxidation of C-H Bonds of Alkylbenzenes

Hu, Xin,Ma, Pengtao,Niu, Jingyang,Wang, Hui,Wang, Jingping,Wang, Quanzhong,Wang, Yingyue,Xu, Baijie

, p. 7753 - 7761 (2021/06/27)

Developing new catalysts for highly efficient and selective oxidation of saturated C-H bonds is significant due to their thermodynamic strength. Via incorporation of PW12O403-, pyridine-2,5-dicarboxylic acids (pydc), and Fe(III) ions into one framework, a new polyoxometalate-based metal-organic framework, [HFe4O2(H2O)4(pydc)3PW12O40]·10.5H2O (FeW-PYDC), was successfully prepared by a hydrothermal method. Interestingly, FeW-PYDC features a three-dimensional porous structure with {Fe4O2} interconnecting with PW12O403- units. FeW-PYDC displayed excellent performance in the selective oxidation of C-H bonds of alkylbenzenes with high conversion (95.7%) and selectivity (96.6%). As an effective heterogeneous catalyst, FeW-PYDC demonstrates good reusability and structural stability.

Synthesis of new rhodium(III) complex by benzylic C[sbnd]S bond cleavage of thioether containing NNS donor Schiff base ligand: Investigation of catalytic activity towards transfer hydrogenation of ketones

Biswas, Sujan,Das, Akash,Kumar Manna, Chandan,Kumar Mondal, Tapan,Naskar, Rahul

, (2020/11/04)

A new rhodium(III)-triphenylphosphine mixed ligand complex, [Rh(PPh3)(L)Cl2] (1) is synthesized by benzylic C[sbnd]S bond cleavage of L-CH2Ph ligand (where, L-CH2Ph = 2-(benzylthio)-N-(pyridin-2-ylmethylene)aniline). The complex is thoroughly characterized by several spectroscopic techniques. Geometry of the complex is confirmed by single crystal X-ray crystallography. Electronic structure, redox properties, absorption and emission properties of the complex were studied. DFT and TDDFT calculations were carried out to interpret the electronic structure and absorption properties of the complex respectively. The synthesized Rh(III) complex was tested as catalyst towards transfer hydrogenation reaction of ketones in iPrOH and an excellent catalytic conversion was observed under mild conditions.

Method for synthesizing secondary alcohol in water phase

-

Paragraph 0034-0035, (2021/07/14)

The invention discloses a method for synthesizing secondary alcohol in a water phase. The method comprises the following steps: taking ketone as a raw material, selecting water as a solvent, and carrying out catalytic hydrogenation reaction on the ketone in the presence of a water-soluble catalyst to obtain the secondary alcohol, wherein the catalyst is a metal iridium complex [Cp * Ir (2, 2'-bpyO)(OH)][Na]. Water is used as the solvent, so that the use of an organic solvent is avoided, and the method is more environment-friendly; the reaction is carried out at relatively low temperature and normal pressure, and the reaction conditions are mild; alkali is not needed in the reaction, so that generation of byproducts is avoided; and the conversion rate of the raw materials is high, and the yield of the obtained product is high. The method not only has academic research value, but also has a certain industrialization prospect.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6531-13-1