Welcome to LookChem.com Sign In|Join Free

CAS

  • or

255733-11-0

Post Buying Request

255733-11-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

255733-11-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 255733-11-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,5,5,7,3 and 3 respectively; the second part has 2 digits, 1 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 255733-11:
(8*2)+(7*5)+(6*5)+(5*7)+(4*3)+(3*3)+(2*1)+(1*1)=140
140 % 10 = 0
So 255733-11-0 is a valid CAS Registry Number.

255733-11-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name (R)-(-)-1-(4-trifluoromethylphenyl)-1,2-ethanediol

1.2 Other means of identification

Product number -
Other names (R)-1-(4-(trifluoromethyl)phenyl)ethane-1,2-diol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:255733-11-0 SDS

255733-11-0Relevant articles and documents

Method for synthesizing chiral 1,2-diol compound

-

Paragraph 0027; 0053-0056, (2021/07/21)

The invention relates to a method for synthesizing a chiral 1,2-diol compound, which comprises the following steps: sequentially adding a cobalt catalyst, a ligand, alpha-hydroxy ketone, an organic solvent and silane into a reaction system at 20-30 DEG C in a nitrogen atmosphere, then stirring the mixture, and carrying out column chromatography separation on the obtained product to obtain the chiral 1,2-diol compound. The high-yield cobalt catalyst in the earth crust is used, meanwhile, cheap silane (PMHS, 500 g/298 yuan) is used as a reducing agent, the asymmetric reduction reaction of alpha-hydroxy ketone can be efficiently achieved under the mild condition, and the chiral 1,2-diol compound with high yield and optical activity is obtained. Moreover, through the creative labor of the inventor, the reaction yield can reach 99%, and meanwhile, the content of the target product in the generated reaction product is 99% (namely, the yield is 99%, 99% ee).

Reprogramming Epoxide Hydrolase to Improve Enantioconvergence in Hydrolysis of Styrene Oxide Scaffolds

Li, Fu-Long,Qiu, Yan-Yan,Zheng, Yu-Cong,Chen, Fei-Fei,Kong, Xu–Dong,Xu, Jian-He,Yu, Hui-Lei

, p. 4699 - 4706 (2020/09/21)

Enantioconvergent hydrolysis by epoxide hydrolase is a promising method for the synthesis of important vicinal diols. However, the poor regioselectivity of the naturally occurring enzymes results in low enantioconvergence in the enzymatic hydrolysis of styrene oxides. Herein, modulated residue No. 263 was redesigned based on structural information and a smart variant library was constructed by site-directed modification using an “optimized amino acid alphabet” to improve the regioselectivity of epoxide hydrolase from Vigna radiata (VrEH2). The regioselectivity coefficient (r) of variant M263Q for the R-isomer of meta-substituted styrene oxides was improved 40–63-fold, and variant M263V also exhibited higher regioselectivity towards the R-isomer of para-substituted styrene oxides compared with the wild type, which resulted in improved enantioconvergence in hydrolysis of styrene oxide scaffolds. Structural insight showed the crucial role of residue No. 263 in modulating the substrate binding conformation by altering the binding surroundings. Furthermore, increased differences in the attacking distance between nucleophilic residue Asp101 and the two carbon atoms of the epoxide ring provided evidence for improved regioselectivity. Several high-value vicinal diols were readily synthesized (>88% yield, 90%–98% ee) by enantioconvergent hydrolysis using the reprogrammed variants. These findings provide a successful strategy for enhancing the enantioconvergence of native epoxide hydrolases through key single-site mutation and more powerful enzyme tools for the enantioconvergent hydrolysis of styrene oxide scaffolds into single (R)-enantiomers of chiral vicinal diols. (Figure presented.).

Production Of Enantiopure alpha-Hydroxy Carboxylic Acids From Alkenes By Cascade Biocatalysis

-

Paragraph 0071-0073, (2016/05/02)

The invention provides compositions comprising an alkene epoxidase and a selective epoxide hydrolase, such as a recombinant microorganism comprising a first heterologous nucleic acid encoding an alkene epoxidase and a second heterologous nucleic acid encoding a selective epoxide hydrolase. Exemplary alkene epoxidases include StyAB, while exemplary selective epoxide hydrolases include epoxide hydrolases from Sphingomonas, Solanum tuberosum, or Aspergillus. The invention also provides non-toxic methods of making enantiomerically pure vicinal diols or enantiomerically pure alpha-hydroxy carboxylic acids using these compositions and microorganisms.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 255733-11-0