Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4705-34-4

Post Buying Request

4705-34-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4705-34-4 Usage

Description

4,4'-DIMETHOXYSTILBENE is an organic compound that serves as an intermediate in the synthesis of nonsteroidal, selective estrogen receptor modulator (SERM), Raloxifene (R100000). It is characterized by its white glistening flake appearance.

Uses

Used in Pharmaceutical Industry:
4,4'-DIMETHOXYSTILBENE is used as an intermediate in the synthesis of Raloxifene, a nonsteroidal selective estrogen receptor modulator (SERM). It plays a crucial role in the development of this medication, which is utilized for the treatment and prevention of osteoporosis in postmenopausal women and also for the reduction of the risk of invasive breast cancer in patients with osteoporosis.
Additionally, Raloxifene has been studied for its potential use in treating other conditions, such as prostate cancer and certain cardiovascular diseases, further expanding the importance of 4,4'-DIMETHOXYSTILBENE in the pharmaceutical industry.

Synthesis Reference(s)

The Journal of Organic Chemistry, 26, p. 4158, 1961 DOI: 10.1021/jo01068a638Synthetic Communications, 21, p. 841, 1991 DOI: 10.1080/00397919108019767Tetrahedron, 43, p. 2741, 1987 DOI: 10.1016/S0040-4020(01)86879-4

Check Digit Verification of cas no

The CAS Registry Mumber 4705-34-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,7,0 and 5 respectively; the second part has 2 digits, 3 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 4705-34:
(6*4)+(5*7)+(4*0)+(3*5)+(2*3)+(1*4)=84
84 % 10 = 4
So 4705-34-4 is a valid CAS Registry Number.

4705-34-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-methoxy-4-[(E)-2-(4-methoxyphenyl)ethenyl]benzene

1.2 Other means of identification

Product number -
Other names p,p'-Dimethoxystilbene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4705-34-4 SDS

4705-34-4Relevant articles and documents

Azobenzene Photoswitching with Near-Infrared Light Mediated by Molecular Oxygen

Kuntze, Kim,Isokuortti, Jussi,Siiskonen, Antti,Durandin, Nikita,Laaksonen, Timo,Priimagi, Arri

, p. 12568 - 12573 (2021/11/20)

Efficient photoisomerization between the cis and the trans states of azobenzenes using low-energy light is desirable for a range of applications in, e.g., photobiology yet challenging to accomplish directly with modified azobenzenes. Herein, we utilize molecular iodine as a photocatalyst to induce indirect cis-to-trans isomerization of 4,4′-dimethoxyazobenzene with 770 nm near-infrared light, showing robustness during more than 1000 cycles in ambient conditions. Intriguingly, the catalysis is mediated by molecular oxygen, and we demonstrate that other singlet-oxygen-generating photosensitizers besides iodine, i.e., palladium phthalocyanine, catalyze the isomerization as well. Thus, we envision that the approach can be further improved by employing other catalysts with suitable photoelectrochemical properties. Further studies are needed to explore the applicability of the approach with other azobenzene derivatives.

Valorisation of urban waste to access low-cost heterogeneous palladium catalysts for cross-coupling reactions in biomass-derived γ-valerolactone

Valentini, Federica,Ferlin, Francesco,Lilli, Simone,Marrocchi, Assunta,Ping, Liu,Gu, Yanlong,Vaccaro, Luigi

supporting information, p. 5887 - 5895 (2021/08/23)

Herein we report a simple protocol for the valorisation of a common urban biowaste. The lignocellulosic biomass obtained after the pre-treatment of pine needle urban waste is efficiently transformed into a low-cost support (PiNe) for the immobilization of Pd nanoparticles. The final Pd/PiNe heterogeneous catalyst features a small particle size (4.5 nm) and a metal loading (9.9 wt%) comparable with most commercially available and generally used counterparts. In this contribution, we tested the catalytic efficiency of the Pd/PiNe system in two representative cross-couplings, Heck and Hiyama reactions, and compared the results obtained with commercial Pd/C catalyst. The good reactivity in the biomass-derived solvent (GVL) confirms that the Pd/PiNe heterogeneous catalyst is a valid system that can be integrated into a waste valorization chain within a circular economy approach. In addition, the efficiency of the catalyst has also been extended to perform the challenging consecutive Hiyama-Heck reaction to afford differently substituted (E)-1,2-diarylethenes.

Tandem Acceptorless Dehydrogenative Coupling-Decyanation under Nickel Catalysis

Babu, Reshma,Balaraman, Ekambaram,Midya, Siba P.,Subaramanian, Murugan,Yadav, Vinita

, p. 7552 - 7562 (2021/06/28)

The development of new catalytic processes based on abundantly available starting materials by cheap metals is always a fascinating task and marks an important transition in the chemical industry. Herein, a nickel-catalyzed acceptorless dehydrogenative coupling of alcohols with nitriles followed by decyanation of nitriles to access diversely substituted olefins is reported. This unprecedented C=C bond-forming methodology takes place in a tandem manner with the formation of formamide as a sole byproduct. The significant advantages of this strategy are the low-cost nickel catalyst, good functional group compatibility (ether, thioether, halo, cyano, ester, amino, N/O/S heterocycles; 43 examples), synthetic convenience, and high reaction selectivity and efficiency.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4705-34-4